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1. Total homotopy fibres of cubes of based spaces

Definition 1.1 (Cubes). Given a finite set S, denote by P(S) the poset of subsets of S and
by P0(S) the poset of proper subsets of S. An S-cube of based spaces is a functor P(S) → T.
We say that an S-cube X is reduced if X (S) = ∗. Notice that reduced cubes correspond to
functors P0(S) → T.

In [2, Definition 1.1], Goodwillie defines the ‘total homotopy fibre’ of a cube of based
spaces. He provides several equivalent descriptions. We will interpret one of these descrip-
tions as an end computed over P(S).

Definition 1.2 (Total homotopy fibre (Goodwillie)). Firstly, given a finite set T denote by
IT the space of functions from f : T → I, where T has the discrete topology and I is the
unit interval. This space is a topological cube, the product of T copies of I. Following [2]
we write (IT )1 for the subspace of IT consisting of functions f such that f(t) = 1 for some
t ∈ T . Write IT for the quotient IT /(IT )1, considered as a based space. (Notice that I∅ = S0

because I∅ is the one-point space and (I∅)1 is the empty subspace.)
If we now restrict to subsets of a fixed S these quotients give us a functor I • : P(S) → T

(that is, an S-cube). If U ⊂ T ⊂ S then we have an inclusion

IU → IT

that extends a function on U to T by setting it to be zero on the elements of T − U . This
maps (IU)1 into IT

1 and so yields a map IU → IT .
Now let X be another S-cube, that is a functor P(S) → T. The definition of the total

homotopy fibre given by Goodwillie is then precisely the end

thofibX :=

∫

T∈P(S)

Map∗(I
T ,X (T )).

Here, Map∗ denotes the space of basepoint-preserving maps. Thus a point in the total
homotopy fibre consists of maps IT → X (T ) such that (IT )1 maps to the basepoint and
satisfying compatibility conditions.

Proposition 1.3. Let X be a reduced cube of based spaces. Then the total homotopy fibre

of X is given by an end computed over P0(S):

thofibX :=

∫

T∈P0(S)

Map∗(I
T ,X (T )).

Proof. It is easy to check that the ends over P(S) and P0(S) are isomorphic when X (S) =
∗. �
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Our goal is to introduce a new definition of the total homotopy fibre of a reduced cube of
based spaces. This will be homotopy equivalent to that of Goodwillie. It is constructed in a
similar way, as an end computed over P0(S). However, we replace the spaces IT with spaces
of weighted labelled trees.

Definition 1.4 (Trees). We use the same species of trees as in [1]. These are finite con-
tractible directed graphs in which no two edges have the same initial vertex and for which
there is a unique final edge, for example: The initial vertices of the tree will be called the

leaves

vertices

root

Figure 1. Terminology for trees

leaves and the unique final vertex of the tree will be the root. From now on, vertex will
mean one of the other (internal) vertices of the tree. We also insist that our vertices have at
least two input edges (and hence valence at least 3). A tree is binary if all its vertices have
exactly two input edges. The root edge is the edge whose final vertex is the root and the leaf

edges are those whose initial vertices are the leaves. The other edges are internal edges.
Let S be a finite set. The tree τ is said to be labelled by a partition of S if we are given

a partition of S into nonempty subsets and a bijection between the set of those subsets and
the leaves of τ .

A weighting on a tree τ is an assignment of non-negative ‘lengths’ to the edges of τ in
such a way that the total ‘distance’ from the root to each leaf is equal to 1.

We will now use trees to define a functor wS−• : P0(S) → T that will play the rôle of the
functor I• in the definition of the total homotopy fibre.

Definition 1.5. Fix a finite set S and let T be a nonempty subset of S. Then let wT (or
wT⊂S if S needs to be made explicit) be the space of weighted trees labelled by partitions
of S that have T contained in one of the pieces of the partition. Trees of different shapes
are identified with each other via weightings that have edges of length zero. The following
diagrams show the identifications that we make:

(1) root edge of length zero counts as the basepoint:

0

∗=
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(2) internal edges of length zero can be collapsed:

0

A B C A B C

y

=

y

x x
x

x x x

(3) leaf edges of length zero are collapsed with labellings for the leaves joined together:

x

y

=

y

0 0
x x x

A q B CCBA

The set of weightings on a fixed tree has a topology given as a subset of the space of functions
from the edges of the tree to [0, 1]. The topology on wT is determined by these spaces of
weightings subject to the above identifications.

Remark 1.6. If T = S, the partition we are labelling our trees with must be trivial. In
this case, there is only one possible tree (the tree with one edge) and only one weighting.
The basepoint in this case is disjoint (we really have quotiented by the empty set) and so
wS = S0.

When U ⊂ T ⊂ S there is a natural inclusion wS−U → wS−T . Since S − T ⊂ S − U , a
weighted tree labelled by a partition that has S − U contained in one of its pieces is also
labelled by a partition that has S − T contained in one of its pieces. We therefore obtain a
functor wS−• : P0(S) → T as promised.

Remark 1.7. Allowing T to be empty in Definition 1.5 we could define this on the whole
of P(S). However, constructions we make later will not be possible for T empty and so we
restrict now to P0(S).

Definition 1.8 (Tree-based total homotopy fibre of a reduced cube). Let X be a reduced
cube of based spaces. The tree-based total homotopy fibre of X is the end

thofib
tree

X :=

∫

T∈P0(S)

Map∗(wS−T ,X (T )).

Justification for calling this the total homotopy fibre at all will follow.

Our next task is to construct maps relating the standard and tree-based total homotopy
fibres. To do this we relate the spaces IT and wS−T . The following proposition is the main
substance of this paper.

Proposition 1.9. Fix a finite set S. There are natural transformations

ι : I• → wS−•
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and

π : wS−• → I•

of functors P0(S) → T such that

πι : IT → IT

is the identity and

ιπ : wS−T → wS−T

is homotopic to the identity for T ∈ P0(S). Moreover this homotopy is natural in T ∈ P0(S).

Proof. We first construct π. Given T ∈ P0(S), a point in wS−T is a weighted tree τ labelled
by a partition λ of S such that one of the pieces contains the nonempty subset S − T . This
tree determines a function T → I as follows. Given t ∈ T we look at the distance from
the leaf at which the branch labelled by t (or rather by the piece of the partition containing
t) meets the branch labelled by S − T (if t is in the same piece of the partition as S − T
then the distance is zero). For short, we call this the distance at which t meets S − T . This
distance is an element of I. Doing this for each t ∈ T determines a point in IT and hence a
point π(τ) in IT . We will refer t

We must first check that this construction is well-defined under the identifications of trees
made in the definition of wS−T . First suppose the root edge of τ has length zero. Then the
distance from the vertex adjoining the root edge to a leaf will be 1. This vertex must have
at least two incoming branches, one of which leads to the leaf labelled by S − T . Pick a t
that labels a leaf that is at the end of one of the other incoming branches. Then the distance
at which t meets S − T is 1 and hence π(τ) is the basepoint in IT . This shows that the
basepoint in wS−T maps to the basepoint in IT .

Next suppose one of the internal edges of τ has length zero. The distances at which the
t-branches meet the (S − T )-branch will not be affected by collapsing that internal edge. So
the map π is well-defined under the second identification of Definition 1.5. Finally, suppose
some of the leaf edges in τ have length zero. Then the t in pieces of the partition labelling
those leaves will meet S−T at distance 0. This is also the case if we collapse all these leaves
to one labelled by the union of the original labels. This completes the check that we have a
well-defined base-point preserving map wS−T → IT .

To see that these maps form a natural transformation take an inclusion T ⊂ T ′. We must
check that the diagram

wS−T IT

wS−T ′ IT ′

//
π
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//
π

commutes. To see this, take a point in wS−T . The image in wS−T ′ is the same tree. It
therefore has the same distances for points in T and distances equal to zero for points in
T ′ − T . But the map IT → IT ′

is extension by zero so the diagram does commute.
We therefore have constructed the natural transformation

π : wS−• → I•.

For ι we must take a point in IT and construct a suitable tree to represent a point in
wS−T . Suppose our point in IT is not the basepoint - it is therefore represented by a unique
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function f : T → I with f(t) 6= 1 for all t ∈ T . Construct a tree as follows. The tree will
have one leaf labelled by S−T and a leaf labelled by {t} for each t ∈ T . We take the ‘trunk’
of the tree to be the path from the S −T leaf to the root and adjoin a branch for each t ∈ T
at a distance f(t) from the leaf. For example:

S − T t1 t2 t3 t4

f(t4)

The basepoint in IT is given by functions that take the value 1 on some t. These would
determine trees in which the root edge had length zero which would be the basepoint in
wS−T . This process therefore gives us a continuous basepoint-preserving map IT → wS−T .

To see that these maps form a natural transformation we check that the diagram

IT wS−T

IT ′ wS−T ′

//
ι
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//
ι

commutes for T ⊂ T ′. To see this notice that if a point in IT ′

maps t to zero for all t ∈ T ′−T ,
then the corresponding tree has leaf edges of length zero . It is therefore equal (in wS−T ′) to
a tree with a leaf labelled with S − T and branches for t ∈ T attached. Hence the required
diagram commutes.

Having constructed the maps in question we turn to the composites. It is clear that πι
is equal to the identity on IT . The composite ιπ is more complicated. However we will
define a homotopy from the identity on wS−T to ιπ. To do this, first notice that any point
in wS−T has a representative tree with leaves labelled by S − T and the one-point sets {t}
for t ∈ T . We obtain this representative by using identification 3 of Definition 1.5 to break
up the leaves as required. Now notice that the composite ιπ(τ) is precisely the tree obtained
from this representative of τ ∈ wS−T by collapsing the internal edges that are not part of
the S − T branch to zero length, increasing the lengths of the leaf edges as necessary (the
S − T branch and the vertices on it remain fixed throughout this process). This collapsing
can be done continuously and determines our homotopy from the identity to ιπ. �

Remark 1.10. In the constructions of the maps ι and π we use extensively the fact that T
is a proper subset of S. These constructions do not work on the whole of P(S).

Corollary 1.11. The tree-based total homotopy fibre of a reduced cube X of based spaces is

homotopy equivalent to the standard total homotopy fibre.

Proof. The natural transformations ι and π induce maps

ι∗ : thofib
tree

X → thofibX
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and

π∗ : thofibX → thofib
tree

X

such that ι∗π∗ is the identity on thofib. The homotopies of Proposition 1.9 are natural in T
and so induce a homotopy from π∗ι∗ to the identity on the tree-based total homotopy fibre.
Here we use that natural transformations from wS•

to itself continuously induce natural
transformations on the end that is the tree-based total homotopy fibre. �

2. Cross-effects of homotopy functors

In [3], Goodwillie defines the nth cross-effect of a homotopy functor as the total homotopy
fibre of an n-cube associated to the functor. Using the constructions of section 1 we can
talk about the ‘tree-based’ cross-effect for the corresponding tree-based total homotopy fibre.
The advantage of this is that it helps us define certain maps relating the cross-effects of a
composite of two homotopy functors to the composites of the cross-effects of the individual
functors. These maps are hoped to form the basis of a chain rule for the homotopy calculus.

Definition 2.1 (Cross-effects). Let F : T → T be a functor that preserves weak equivalences
of based spaces. Denote by X 7→ X̃ a cofibrant relacement functor in T. In other words, for
any X, the basepoint in X̃ is nondegenerate.

For a finite set S, the Sth cross-effect of F is the following functor F : T S → T. Given a
collection of based spaces {Xs}s∈S indexed by S, we construct an S-cube X of based spaces
by

X (T ) := F

(

∨

s/∈T

X̃s

)

.

If T ⊂ T ′ then the map X (T ) → X (T ′) is given by collapsing the unwanted factors (those
for t ∈ T ′ − T ) of the wedge product to the basepoint and the identity on the other factors.
The value of the cross-effect at the spaces {Xs} is then the total homotopy fibre of this cube:

crS F ({Xs}) := thofibX .

Remark 2.2. The symmetric group on S acts on the Sth cross-effect by permuting the input
spaces. The nth cross-effect (written crn) is the Sth cross-effect with S = {1, . . . , n}.

Proposition 2.3 (Goodwillie). The nth derivative of a homotopy functor F is the coefficient

spectrum of the symmetric multilinear functor obtained by multilinearizing the nth cross-

effect.

Definition 2.4 (Tree-based cross-effects). Let F be a homotopy functor such that F (∗) = ∗.
Then the S-cube X of Definition 2.1 is reduced. Then the S th tree-based cross-effect of F is
the functor T S → T given by

crtree
S F ({Xs}) := thofib

tree
X

where X is the S-cube of Definition 2.1.

Remark 2.5. This construction only works for F such that F (∗) = ∗.
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Remark 2.6. We can think of a point in the tree-based cross-effect of F as follows. For any
weighted tree τ labelled by a partition λ = (λ1, . . . , λr) of S, it gives us a point in

F

(

∨

s∈λ1

X̃s

)

× · · · × F

(

∨

s∈λr

X̃s

)

.

These associations must be continuous and must respect identifications of trees involving
edges of length zero.

Proposition 2.7 (Goodwillie). The nth derivative of a homotopy functor F : T → T is

equivalent to the coefficient spectrum of the symmetric multilinear functor obtained by mul-

tilinearizing the nth cross-effect of F .

Corollary 2.8. The nth derivative of a homotopy functor F : T → T that satisfies F (∗) = ∗
is equivalent to the coefficient spectrum of the multilinear functor obtained by multilinearizing

the nth tree-based cross-effect of F .

Proof. This follows from the Proposition because the tree-based cross-effect is homotopy
equivalent to Goodwillie’s cross-effect by Corollary 1.11. �

Comparing the definition of the tree-based cross-effect with the methods used in [1] to
show that the derivatives ∂∗I of the identity functor I on based spaces form an operad, it
seems likely that the tree-based cross-effects are appropriate for showing that the derivatives
of F form a (left) module over that operad.
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